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4 Ny
Continuit ( . - N
Y Differentiability
Continuity of a Function at a Point
N N P A function f is said to be differentiable at a point ¢ in its domain, if its left hand & right
Suppose f is a real function on a subset of the real numbers & let ¢ be a point in the et N
do?r']amn of f. Then f is continuous at ¢ if p uand t:envutlves exist at ¢ are equal.
c lereatx=c,

Left Hand Derivative,
lim (x)= f(c)
— LHD. = fim fle=h)-f(c) _ 1f (c)
- L L
Continuity of a Function in an Interval ! o
suppose f is a function defined on a closed interval [a, b], then for f to be continuous, it needs to be Right Hand Derivative,
continuous at every point in [a, b] including the end points a & b.

RHD. = lim f—(—)—(—)-c”r‘] RICOEO)

Continuity of f at a, lim f(x)= f(a)
b Theorem: If a function f is differentiable at a point ¢, then it is also continuous at that point. Therefore, every

Continuity of f at b, lim f(x)= f(b) Ldifferentiable function is continuous, but the converse is not true. )
A function which is not continuous at point x=c is said to be discontinuous at that point
y
4 N )
Algebra of Continuous Functions tetu, vbe the functions of X. )
. (1) sum and Difference Rule (u +v) = u'+ v/
Theorem 1: Suppose f & g be two real functions continuous (2) Leibnitz or Product Rule (uv) = u v+ uy
at a real number ¢, Then (3) Quotient Rule (L)= U - uv
. . . \%
(1) f + g is continuous at x=c  (3) f.g is continuous at x=c v
(2) f-gis continuous at x=c  (4) f/gis continuous at x=c,
(provided g(c)=0)
Theorem 2: Suppose f & g are real valued functions such that (fog) is Chqln RUIe . . .
. . ; e . If y is a function of u, u is a function of v & v is
defined at c. If g is continuous at c& if f is continuous at g(c), then X
. . a function of x.
(fog) is continuous at c.
\ y dy _dy du_dv

Then, 5 = au ¥av*ax

7 N
Implicit Functions

An equation of the form f(x, y) = 0 in which y
is not expressible in terms of x is called an co N TI N U ITY AN D
implicit function of x & y.
Derivative of Implicit Functions

Let y=f(x, y), where f(x, y) be an implicit function of x & y. DI F F E R E N T I A B I L I TY

Firstly differentiate both sides of equation w.r.t x

Then take all terms involving% on LH.S. & remaining terms on

R.H.S. to get the required value. ( A ) . L. )
\ J Logarithmic Differentiation
7~ N Logarithmic Differentiation is a very useful technique to
Differentiation of Inverse differentiate functions of the form f(x)=[u(x)]*®, where
Trigonometric Functions f(x) & u(x) are positive.
£(x) (%) Domain of We apply logarithm (to base) on both sides to the above equation & then
: differentiate by using chain rule, in this way we can find f (x). This process
sinix T (GI)) is called logarithmic
- X
» di(eX)=eX,:;1 (Iogx)=]—&dic1*=0*|oga
. X X X X
cosx s (-1 L J
tanx ] ! - R Derivatives of Functions In Parametric Form
+X
The set of equations x = f(t), y = g(t) is called the parametric form of an equation.
-1 Here, ﬂ: dy/dt or ﬂ
cot™x R dx dx/dt £(t)
1+x?
p Here, % is expressed in terms of parameter only without directly involving the main variables.
sec™ x| a1 [x]1
— [x]>1
4 d
cosecx RN Lety = f(x), then d—: =£(x)
If £'(x) is differentiable, then we may differentiate
\ S it again w.r.t. x & get the second order derivative
represented by:
4 N
Mean Value Theorem S or &Y o () or Dy ory oy,
If f: [0, b] =R is continuous on [q, b] & differentiable dx \ dx dx?
on (a, b). Then there exists some c in (a, b) such that
ro)= Me)-tla) r 2
°e Rolle's Theorem
Y If f: [a, b]—R is continuous on [q, b]& differentiable on (a, b)
such that f(a) = f(b), then there exists some c in (q, b) such
thatf (c) =0 v

Tay f(c)é f(b)é

X
X' Ol a b ¢
Y In the above graph, the slope of tangent to the curve at least at one point becomes
The Mean value Theorem states that there is a point ¢ in (a, b) such that zero. The slope of tangent at any point on the graph of y = f(x) is nothing but the
the slope of the tangent at (c, f(c)) is same as the slope of the secant derivative of f(x) at that point.

" S

between (q, f(a)) and (b, f(b)) or there is a point ¢ in (@, b) such that
the tangent at (c, f(c) is parallel to the secant between (a, f(a) & (b, f(b))
\ S

Get More Learning Materials Here : & m @&\ www.studentbro.in



